Long Term Temporal Changes in Structure and Function of Rat Visual System After Blast Exposure.
نویسندگان
چکیده
Purpose We identify long-term ocular sequelae subsequent to experimental blast exposure. Methods Male Long-Evans rats were exposed to 230 kPa side-on primary blast overpressure using a compressed air driven shock tube. Visual system function and structure were assessed for 8 weeks after exposure using optokinetic nystagmus and optical coherence tomography. Vitreous protein expression and histology (TUNEL, H&E) were performed at 1 day and 1, 4, and 8 weeks. IOP was recorded bilaterally during blast in a subset of animals. Results Blast pressure profiles resembled the Friedlander waveform indicative of an open field blast. Peak IOP in directly-exposed eyes (240 kPa) was similar to peak blast overpressure, but IOP in indirectly-exposed eyes was 30% lower. Contrast sensitivity of blast-exposed animals decreased significantly by 20% 1 day after blast and did not recover by 8 weeks. Significant swelling and structural damage to the corneal epithelial and stromal layers were observed 2 weeks after blast exposure. Swollen corneas increased 254 ± 143 μm from baseline by 6 weeks, and scarring developed by 8 weeks. Histology revealed additional lens pathology 1 week after blast, suggestive of cataract development. Endothelial cell density increased significantly in blast-exposed animals between 1 and 4 weeks. Neurofilament heavy chain significantly increased after blast and returned to near baseline values by 8 weeks. Inflammatory cytokine changes corroborated ocular pathology findings. Conclusions These data demonstrate immediate visual dysfunction and biochemical responses, but delayed structural pathology, in response to single primary blast exposure. The delayed pathology time course may provide a window to implement treatment strategies for improved visual outcome.
منابع مشابه
Low-power density of 950 MHz radiation does not affect long-term potentiation in rat dentate gyrus
Introduction: Over the last decade, exposure to non-ionizing electromagnetic waves due to base station antenna has increased. This in vivo study was planned for evaluating the effects of whole-body exposure to 950 MHz field of GSM mobile phone system on rat dentate gyrus long-term potentiation. Materials and Methods: 24 naive male Wistar rats (3 month old, 225|¡|25 g) were randomly divided in t...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملAdaptive changes of redox status in rat brain tissues due to decimeter microwave irradiation
Electromagnetic waves affect living organisms and it is of great interest for wide interaction of new sources with a diversity of frequencies and powers to life of people. In the last few years, many authors have proposed that the biological effect of electromagnetic fields in both the high-frequency and low-frequency ranges are connected with oxidative processes in tissues. Studying the change...
متن کاملCatecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2
Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...
متن کاملCatecholamine Contents of Different Region of Adult Rat Brain Are Altered Following Short and Long-term Exposures to Pb+2
Catecholamine is a group of neurotransmitters that is believed to be responsible for the normal function of animal brain. Physiological and behavioral changes of human body have been reported due to the damage of the brain function following lead exposure. Due to the assumption of lead disposal in brain tissue with two year for its half-life, which results in alteration of brain function, we in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 59 1 شماره
صفحات -
تاریخ انتشار 2018